Skip to content

How To Create A Deployment#

Introduction#

In this guide, you will learn how to create a new deployment for a trained model.

Warning

This guide assumes that a model has already been trained and saved into the Model Registry. To learn how to create a model in the Model Registry, see Model Registry Guide

Deployments are used to unify the different components involved in making one or more trained models online and accessible to compute predictions on demand. In each deployment, there are three main components to consider:

GUI#

Step 1: Create a deployment#

If you have at least one model already trained and saved in the Model Registry, navigate to the deployments page by clicking on the Deployments tab on the navigation menu on the left.

Deployments navigation tab
Deployments navigation tab

Once in the deployments page, you can create a new deployment by either clicking on New deployment (if there are no existing deployments) or on Create new deployment it the top-right corner. Both options will open the deployment creation form.

Step 2: Basic deployment configuration#

A simplified creation form will appear including the most common deployment fields from all available configurations. We provide default values for the rest of the fields, adjusted to the type of deployment you want to create.

In the simplified form, select the model framework used to train your model (i.e., TensorFlow Serving or Python). Then, select the model you want to deploy from the list of available models under pick a model.

After selecting the model, the rest of fields are filled automatically. We pick the last model version and model artifact version available in the Model Registry. Moreover, we infer the deployment name from the model name.

Deployment name validation rules

A valid deployment name can only contain characters a-z, A-Z and 0-9.

Predictor script for Python models

For Python models, you can select a custom predictor script to load and run the trained model by clicking on From project or Upload new file, to choose an existing script in the project file system or upload a new script, respectively.

If you prefer, change the name of the deployment, model version or artifact version. Then, click on Create new deployment to create the deployment for your model.

Simplified deployment form for TensorFlow Simplified deployment form for Python
Simplified deployment creation forms for TensorFlow models (left) and Python models (right)

Step 3 (Optional): Advanced configuration#

Optionally, you can access and adjust other parameters of the deployment configuration by clicking on Advanced options.

Advance options
Advanced options. Go to advanced deployment creation form

You will be redirected to a full-page deployment creation form where you can see all the default configuration values we selected for your deployment and adjust them according to your use case. Apart from the aforementioned simplified configuration, in this form you can setup the following components:

Once you are done with the changes, click on Create new deployment at the bottom of the page to create the deployment for your model.

Step 4: Deployment creation#

Wait for the deployment creation process to finish.

Creating new deployment
Deployment creation in progress

Step 5: Deployment overview#

Once the deployment is created, you will be redirected to the list of all your existing deployments in the project. You can use the filters on the top of the page to easily locate your new deployment.

List of deployments
List of deployments

After that, click on the new deployment to access the overview page.

Deployment overview
Deployment overview

Code#

Step 1: Connect to Hopsworks#

import hopsworks

project = hopsworks.login()

# get Hopsworks Model Registry handle
mr = project.get_model_registry()

Step 2: Create deployment#

Retrieve the trained model you want to deploy.

my_model = mr.get_model("my_model", version=1)

Option A: Using the model object#

my_deployment = my_model.deploy()

Option B: Using the Model Serving handle#

# get Hopsworks Model Serving handle
ms = project.get_model_serving()

my_predictor = ms.create_predictor(my_model)
my_deployment = my_predictor.deploy()

# or
my_deployment = ms.create_deployment(my_predictor)
my_deployment.save()

API Reference#

Model Serving

Model Artifact#

A model artifact is a package containing all of the necessary files for the deployment of a model. It includes the model file(s) and/or custom scripts for loading the model (predictor script) or transforming the model inputs at inference time (the transformer script).

When a new deployment is created, a model artifact is generated in two cases:

  • the artifact version in the predictor is set to CREATE (see Artifact Version)
  • no model artifact with the same files has been created before.

Predictor#

Predictors are responsible for running the model server that loads the trained model, listens to inference requests and returns prediction results. To learn more about predictors, see the Predictor Guide

Note

Currently, only one predictor is supported in a deployment. Support for multiple predictors (the inference graphs) is coming soon.

Info

Model artifacts are assigned an incremental version number, being 0 the version reserved for model artifacts that do not contain predictor or transformer scripts (i.e., shared artifacts containing only the model files).

Transformer#

Transformers are used to apply transformations on the model inputs before sending them to the predictor for making predictions using the model. To learn more about transformers, see the Transformer Guide.

Warning

Transformers are only supported in KServe deployments.

Inference logger#

Inference loggers are deployment components that log inference requests into a Kafka topic for later analysis. To learn about the different logging modes, see the Inference Logger Guide

Inference batcher#

Inference batcher are deployment component that apply batching to the incoming inference requests for a better throughput-latency trade-off. To learn about the different configuration available for the inference batcher, see the Inference Batcher Guide.

Resources#

Resources include the number of replicas for the deployment as well as the resources (i.e., memory, CPU, GPU) to be allocated per replica. To learn about the different combinations available, see the Resources Guide.

API protocol#

Hopsworks supports both REST and gRPC as the API protocols to send inference requests to model deployments. In general, you use gRPC when you need lower latency inference requests. To learn more about the REST and gRPC API protocols for model deployments, see the API Protocol Guide.

Conclusion#

In this guide you learned how to create a deployment.