How To Attach A Model Schema#
Introduction#
In this guide you will learn how to attach a model schema to your model. A model schema, describes the type and shape of inputs and outputs (predictions) for your model. Attaching a model schema to your model will give other users a better understanding of what data it expects.
Code#
Step 1: Connect to Hopsworks#
import hopsworks
project = hopsworks.login()
# get Hopsworks Model Registry handle
mr = project.get_model_registry()
Step 2: Create ModelSchema#
Create a ModelSchema for your inputs and outputs by passing in an example that your model is trained on and a valid prediction. Currently, we support pandas.DataFrame, pandas.Series, numpy.ndarray, list
.
# Import a Schema and ModelSchema definition
from hsml.utils.model_schema import ModelSchema
from hsml.utils.schema import Schema
# Model inputs for MNIST dataset
inputs = [{'type': 'uint8', 'shape': [28, 28, 1], 'description': 'grayscale representation of 28x28 MNIST images'}]
# Build the input schema
input_schema = Schema(inputs)
# Model outputs
outputs = [{'type': 'float32', 'shape': [10]}]
# Build the output schema
output_schema = Schema(outputs)
# Create ModelSchema object
model_schema = ModelSchema(input_schema=input_schema, output_schema=output_schema)
Step 3: Set model_schema parameter#
Set the model_schema
parameter in the create_model
function and call save()
to attaching it to the model and register it in the registry.
model = mr.tensorflow.create_model(name="mnist",
model_schema=model_schema)
model.save("./model")
Conclusion#
In this guide you learned how to attach an input example to your model.