Training Dataset#
TrainingDataset#
hsfs.training_dataset.TrainingDataset(
name,
version,
data_format,
location,
featurestore_id,
description=None,
storage_connector=None,
splits=None,
seed=None,
created=None,
creator=None,
features=None,
statistics_config=None,
featurestore_name=None,
id=None,
jobs=None,
inode_id=None,
training_dataset_type=None,
from_query=None,
querydto=None,
label=None,
)
Creation#
create_training_dataset#
FeatureStore.create_training_dataset(
name,
version=None,
description="",
data_format="tfrecords",
storage_connector=None,
splits={},
location="",
seed=None,
statistics_config=None,
label=[],
)
Create a training dataset metadata object.
Lazy
This method is lazy and does not persist any metadata or feature data in the
feature store on its own. To materialize the training dataset and save
feature data along the metadata in the feature store, call the save()
method with a DataFrame
or Query
.
Data Formats
The feature store currently supports the following data formats for training datasets:
- tfrecord
- csv
- tsv
- parquet
- avro
- orc
Currently not supported petastorm, hdf5 and npy file formats.
Arguments
- name
str
: Name of the training dataset to create. - version
Optional[int]
: Version of the training dataset to retrieve, defaults toNone
and will create the training dataset with incremented version from the last version in the feature store. - description
Optional[str]
: A string describing the contents of the training dataset to improve discoverability for Data Scientists, defaults to empty string""
. - data_format
Optional[str]
: The data format used to save the training dataset, defaults to"tfrecords"
-format. - storage_connector
Optional[hsfs.StorageConnector]
: Storage connector defining the sink location for the training dataset, defaults toNone
, and materializes training dataset on HopsFS. - splits
Optional[Dict[str, float]]
: A dictionary defining training dataset splits to be created. Keys in the dictionary define the name of the split asstr
, values represent percentage of samples in the split asfloat
. Currently, only random splits are supported. Defaults to empty dict{}
, creating only a single training dataset without splits. - location
Optional[str]
: Path to complement the sink storage connector with, e.g if the storage connector points to an S3 bucket, this path can be used to define a sub-directory inside the bucket to place the training dataset. Defaults to""
, saving the training dataset at the root defined by the storage connector. - seed
Optional[int]
: Optionally, define a seed to create the random splits with, in order to guarantee reproducability, defaults toNone
. - statistics_config
Optional[Union[hsfs.StatisticsConfig, bool, dict]]
: A configuration object, or a dictionary with keys "enabled
" to generally enable descriptive statistics computation for this feature group,"correlations
" to turn on feature correlation computation and"histograms"
to compute feature value frequencies. The values should be booleans indicating the setting. To fully turn off statistics computation passstatistics_config=False
. Defaults toNone
and will compute only descriptive statistics. - label
Optional[List[str]]
: A list of feature names constituting the prediction label/feature of the training dataset. When replaying aQuery
during model inference, the label features can be omitted from the feature vector retrieval. Defaults to[]
, no label.
Returns:
TrainingDataset
: The training dataset metadata object.
Retrieval#
get_training_dataset#
FeatureStore.get_training_dataset(name, version=None)
Get a training dataset entity from the feature store.
Getting a training dataset from the Feature Store means getting its metadata handle so you can subsequently read the data into a Spark or Pandas DataFrame.
Arguments
- name
str
: Name of the training dataset to get. - version
Optional[int]
: Version of the training dataset to retrieve, defaults toNone
and will return theversion=1
.
Returns
TrainingDataset
: The training dataset metadata object.
Raises
RestAPIError
: If unable to retrieve feature group from the feature store.
Properties#
data_format#
File format of the training dataset.
description#
feature_store_id#
id#
Training dataset id.
label#
The label/prediction feature of the training dataset.
Can be a composite of multiple features.
location#
Path to the training dataset location.
name#
Name of the training dataset.
query#
Query to generate this training dataset from online feature store.
schema#
Training dataset schema.
seed#
Seed.
splits#
Training dataset splits. train
, test
or eval
and corresponding percentages.
statistics#
Get the latest computed statistics for the training dataset.
statistics_config#
Statistics configuration object defining the settings for statistics computation of the training dataset.
storage_connector#
Storage connector.
version#
Version number of the training dataset.
write_options#
User provided options to write training dataset.
Methods#
add_tag#
TrainingDataset.add_tag(name, value=None)
Attach a name/value tag to a training dataset.
A tag can consist of a name only or a name/value pair. Tag names are unique identifiers.
Arguments
- name
str
: Name of the tag to be added. - value
Optional[str]
: Value of the tag to be added, defaults toNone
.
compute_statistics#
TrainingDataset.compute_statistics()
Recompute the statistics for the training dataset and save them to the feature store.
delete_tag#
TrainingDataset.delete_tag(name)
Delete a tag from a training dataset.
Tag names are unique identifiers.
Arguments
- name
str
: Name of the tag to be removed.
from_response_json#
TrainingDataset.from_response_json(json_dict)
get_query#
TrainingDataset.get_query(online=True, with_label=False)
Returns the query used to generate this training dataset
Arguments
- online
bool
: boolean, optional. Return the query for the online storage, else for offline storage, defaults toTrue
- for online storage. - with_label
bool
: Indicator whether the query should contain features which were marked as prediction label/feature when the training dataset was created, defaults toFalse
.
Returns
str
. Query string for the chosen storage used to generate this training
dataset.
get_statistics#
TrainingDataset.get_statistics(commit_time=None)
Returns the statistics for this training dataset at a specific time.
If commit_time
is None
, the most recent statistics are returned.
Arguments
- commit_time
Optional[str]
: Commit time in the formatYYYYMMDDhhmmss
, defaults toNone
.
Returns
Statistics
. Object with statistics information.
get_tag#
TrainingDataset.get_tag(name=None)
Get the tags of a training dataset.
Tag names are unique identifiers. Returns all tags if no tag name is specified.
Arguments
- name: Name of the tag to get, defaults to
None
.
Returns
List[Tag]
. List of tags as name/value pairs.
insert#
TrainingDataset.insert(features, overwrite, write_options={})
Insert additional feature data into the training dataset.
This method appends data to the training dataset either from a Feature Store
Query
, a Spark or Pandas DataFrame
, a Spark RDD, two-dimensional Python
lists or Numpy ndarrays. The schemas must match for this operation.
This can also be used to overwrite all data in an existing training dataset.
Arguments
- features
Union[hsfs.constructor.query.Query, pandas.DataFrame, pyspark.sql.DataFrame, pyspark.RDD, numpy.ndarray, List[list]]
: Feature data to be materialized. - overwrite
bool
: Whether to overwrite the entire data in the training dataset. - write_options
Optional[Dict[Any, Any]]
: Additional write options as key/value pairs. Defaults to{}
.
Returns
TrainingDataset
: The updated training dataset metadata object, the
previous TrainingDataset
object on which you call save
is also
updated.
Raises
RestAPIError
: Unable to create training dataset metadata.
json#
TrainingDataset.json()
read#
TrainingDataset.read(split=None, read_options={})
Read the training dataset into a dataframe.
It is also possible to read only a specific split.
Arguments
- split: Name of the split to read, defaults to
None
, reading the entire training dataset. - read_options: Additional read options as key/value pairs, defaults to
{}
.
Returns
DataFrame
: The spark dataframe containing the feature data of the
training dataset.
save#
TrainingDataset.save(features, write_options={})
Materialize the training dataset to storage.
This method materializes the training dataset either from a Feature Store
Query
, a Spark or Pandas DataFrame
, a Spark RDD, two-dimensional Python
lists or Numpy ndarrays.
Arguments
- features
Union[hsfs.constructor.query.Query, pandas.DataFrame, pyspark.sql.DataFrame, pyspark.RDD, numpy.ndarray, List[list]]
: Feature data to be materialized. - write_options
Optional[Dict[Any, Any]]
: Additional write options as key/value pairs. Defaults to{}
.
Returns
TrainingDataset
: The updated training dataset metadata object, the
previous TrainingDataset
object on which you call save
is also
updated.
Raises
RestAPIError
: Unable to create training dataset metadata.
show#
TrainingDataset.show(n, split=None)
Show the first n
rows of the training dataset.
You can specify a split from which to retrieve the rows.
Arguments
- n
int
: Number of rows to show. - split
Optional[str]
: Name of the split to show, defaults toNone
, showing the first rows when taking all splits together.
tf_data#
TrainingDataset.tf_data(
target_name,
split=None,
feature_names=None,
var_len_features=[],
is_training=True,
cycle_length=2,
)
Returns an object with utility methods to read training dataset as tf.data.Dataset
object and handle it for further processing.
Arguments
- target_name
str
: Name of the target variable. - split
Optional[str]
: Name of training dataset split. For example,"train"
,"test"
or"val"
, defaults toNone
, returning the full training dataset. - feature_names
Optional[list]
: Names of training variables, defaults toNone
. - var_len_features
Optional[list]
: Feature names that have variable length and need to be returned astf.io.VarLenFeature
, defaults to[]
. - is_training
Optional[bool]
: Whether it is for training, testing or validation. Defaults toTrue
. - cycle_length
Optional[int]
: Number of files to be read and deserialized in parallel, defaults to2
.
Returns
TFDataEngine
. An object with utility methods to generate and handle tf.data.Dataset
object.
to_dict#
TrainingDataset.to_dict()
update_from_response_json#
TrainingDataset.update_from_response_json(json_dict)
update_statistics_config#
TrainingDataset.update_statistics_config()
Update the statistics configuration of the training dataset.
Change the statistics_config
object and persist the changes by calling
this method.
Returns
TrainingDataset
. The updated metadata object of the training dataset.
Raises
RestAPIError
.