Model#
Creation of a TensorFlow model#
create_model#
hsml.model_registry.ModelRegistry.tensorflow.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create a TensorFlow model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents inputs for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Creation of a Torch model#
create_model#
hsml.model_registry.ModelRegistry.torch.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create a Torch model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents inputs for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Creation of a scikit-learn model#
create_model#
hsml.model_registry.ModelRegistry.sklearn.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create an SkLearn model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents inputs for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Creation of a generic model#
create_model#
hsml.model_registry.ModelRegistry.python.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create a generic Python model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents inputs for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Retrieval#
get_model#
ModelRegistry.get_model(name, version=None)
Get a model entity from the model registry. Getting a model from the Model Registry means getting its metadata handle so you can subsequently download the model directory.
Arguments
- name
str
: Name of the model to get. - version
Optional[int]
: Version of the model to retrieve, defaults toNone
and will return theversion=1
.
Returns
Model
: The model metadata object.
Raises
RestAPIError
: If unable to retrieve model from the model registry.
Properties#
created#
Creation date of the model.
description#
Description of the model.
environment#
Input example of the model.
experiment_id#
Experiment Id of the model.
experiment_project_name#
experiment_project_name of the model.
framework#
framework of the model.
id#
Id of the model.
input_example#
input_example of the model.
model_path#
path of the model with version folder omitted. Resolves to /Projects/{project_name}/Models/{name}
model_registry_id#
model_registry_id of the model.
model_schema#
model schema of the model.
name#
Name of the model.
program#
Executable used to export the model.
project_name#
project_name of the model.
shared_registry_project_name#
shared_registry_project_name of the model.
training_dataset#
training_dataset of the model.
training_metrics#
Training metrics of the model.
user#
user of the model.
version#
Version of the model.
version_path#
path of the model including version folder. Resolves to /Projects/{project_name}/Models/{name}/{version}
Methods#
delete#
Model.delete()
Delete the model
Potentially dangerous operation
This operation drops all metadata associated with this version of the model and deletes the model files.
Raises
RestAPIError
.
delete_tag#
Model.delete_tag(name)
Delete a tag attached to a model.
Arguments
- name
str
: Name of the tag to be removed.
Raises
RestAPIError
in case the backend fails to delete the tag.
download#
Model.download()
Download the model files to a local folder.
get_tag#
Model.get_tag(name)
Get the tags of a model.
Arguments
- name
str
: Name of the tag to get.
Returns
tag value
Raises
RestAPIError
in case the backend fails to retrieve the tag.
get_tags#
Model.get_tags()
Retrieves all tags attached to a model.
Returns
Dict[str, obj]
of tags.
Raises
RestAPIError
in case the backend fails to retrieve the tags.
get_url#
Model.get_url()
save#
Model.save(model_path, await_registration=480)
Persist this model including model files and metadata to the model registry.
set_tag#
Model.set_tag(name, value)
Attach a tag to a model.
A tag consists of a
Arguments
- name
str
: Name of the tag to be added. - value
Union[str, dict]
: Value of the tag to be added.
Raises
RestAPIError
in case the backend fails to add the tag.