Model#
Creation of a TensorFlow model#
create_model#
hsml.model_registry.ModelRegistry.tensorflow.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create a TensorFlow model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - metrics
Optional[dict]
: Optionally a dictionary with model evaluation metrics (e.g., accuracy, MAE) - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents a single input for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Creation of a Torch model#
create_model#
hsml.model_registry.ModelRegistry.torch.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create a Torch model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - metrics
Optional[dict]
: Optionally a dictionary with model evaluation metrics (e.g., accuracy, MAE) - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents a single input for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Creation of a scikit-learn model#
create_model#
hsml.model_registry.ModelRegistry.sklearn.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create an SkLearn model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - metrics
Optional[dict]
: Optionally a dictionary with model evaluation metrics (e.g., accuracy, MAE) - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents a single input for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Creation of a generic model#
create_model#
hsml.model_registry.ModelRegistry.python.create_model(
name, version=None, metrics=None, description=None, input_example=None, model_schema=None
)
Create a generic Python model metadata object.
Lazy
This method is lazy and does not persist any metadata or uploads model artifacts in the
model registry on its own. To save the model object and the model artifacts, call the save()
method with a
local file path to the directory containing the model artifacts.
Arguments
- name
str
: Name of the model to create. - version
Optional[int]
: Optionally version of the model to create, defaults toNone
and will create the model with incremented version from the last version in the model registry. - metrics
Optional[dict]
: Optionally a dictionary with model evaluation metrics (e.g., accuracy, MAE) - description
Optional[str]
: Optionally a string describing the model, defaults to empty string""
. - input_example
Optional[Union[pandas.core.frame.DataFrame, pandas.core.series.Series, numpy.ndarray, list]]
: Optionally an input example that represents a single input for the model, defaults toNone
. - model_schema
Optional[hsml.model_schema.ModelSchema]
: Optionally a model schema for the model inputs and/or outputs.
Returns
Model
. The model metadata object.
Retrieval#
get_model#
ModelRegistry.get_model(name, version=None)
Get a model entity from the model registry. Getting a model from the Model Registry means getting its metadata handle so you can subsequently download the model directory.
Arguments
- name
str
: Name of the model to get. - version
Optional[int]
: Version of the model to retrieve, defaults toNone
and will return theversion=1
.
Returns
Model
: The model metadata object.
Raises
RestAPIError
: If unable to retrieve model from the model registry.
Properties#
created#
Creation date of the model.
description#
Description of the model.
environment#
Input example of the model.
experiment_id#
Experiment Id of the model.
experiment_project_name#
experiment_project_name of the model.
framework#
framework of the model.
id#
Id of the model.
input_example#
input_example of the model.
model_path#
path of the model with version folder omitted. Resolves to /Projects/{project_name}/Models/{name}
model_registry_id#
model_registry_id of the model.
model_schema#
model schema of the model.
name#
Name of the model.
program#
Executable used to export the model.
project_name#
project_name of the model.
shared_registry_project_name#
shared_registry_project_name of the model.
training_dataset#
training_dataset of the model.
training_metrics#
Training metrics of the model.
user#
user of the model.
version#
Version of the model.
version_path#
path of the model including version folder. Resolves to /Projects/{project_name}/Models/{name}/{version}
Methods#
delete#
Model.delete()
Delete the model
Potentially dangerous operation
This operation drops all metadata associated with this version of the model and deletes the model files.
Raises
RestAPIError
.
delete_tag#
Model.delete_tag(name)
Delete a tag attached to a model.
Arguments
- name
str
: Name of the tag to be removed.
Raises
RestAPIError
in case the backend fails to delete the tag.
deploy#
Model.deploy(
name=None,
description=None,
artifact_version="CREATE",
serving_tool=None,
script_file=None,
resources=None,
inference_logger=None,
inference_batcher=None,
transformer=None,
)
Deploy the model.
Example
import hopsworks
project = hopsworks.login()
# get Hopsworks Model Registry handle
mr = project.get_model_registry()
# retrieve the trained model you want to deploy
my_model = mr.get_model("my_model", version=1)
my_deployment = my_model.deploy()
Arguments
- name
Optional[str]
: Name of the deployment. - description
Optional[str]
: Description of the deployment. - artifact_version
Optional[str]
: Version number of the model artifact to deploy,CREATE
to create a new model artifact orMODEL-ONLY
to reuse the shared artifact containing only the model files. - serving_tool
Optional[str]
: Serving tool used to deploy the model server. - script_file
Optional[str]
: Path to a custom predictor script implementing the Predict class. - resources
Optional[Union[hsml.resources.PredictorResources, dict]]
: Resources to be allocated for the predictor. - inference_logger
Optional[Union[hsml.inference_logger.InferenceLogger, dict]]
: Inference logger configuration. - inference_batcher
Optional[Union[hsml.inference_batcher.InferenceBatcher, dict]]
: Inference batcher configuration. - transformer
Optional[Union[hsml.transformer.Transformer, dict]]
: Transformer to be deployed together with the predictor.
Returns
Deployment
. The deployment metadata object of a new or existing deployment.
download#
Model.download()
Download the model files to a local folder.
get_tag#
Model.get_tag(name)
Get the tags of a model.
Arguments
- name
str
: Name of the tag to get.
Returns
tag value
Raises
RestAPIError
in case the backend fails to retrieve the tag.
get_tags#
Model.get_tags()
Retrieves all tags attached to a model.
Returns
Dict[str, obj]
of tags.
Raises
RestAPIError
in case the backend fails to retrieve the tags.
get_url#
Model.get_url()
save#
Model.save(model_path, await_registration=480)
Persist this model including model files and metadata to the model registry.
Arguments
- model_path: Local or remote (Hopsworks file system) path to the folder where the model files are located, or path to a specific model file.
- await_registration: Awaiting time for the model to be registered in Hopsworks.
Returns
Model
. The model metadata object.
set_tag#
Model.set_tag(name, value)
Attach a tag to a model.
A tag consists of a
Arguments
- name
str
: Name of the tag to be added. - value
Union[str, dict]
: Value of the tag to be added.
Raises
RestAPIError
in case the backend fails to add the tag.